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I N T R O D U C E D  B Y  A. R O B I N S O N  t 
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ABSTRACT 

It is shown that the nonarchimedean valuation fields PR introduced by A. 
Robinson are not only complete but are also spherically complete. Further- 
more, it is shown that to every normed linear space over the reals there exists a 
nonarchimedean normed linear space PE over ~R in the sense of Monna which 
is spherically complete and extends E. 

I. Introduction 

The  t e rm  n o n a r c h i m e d e a n  analysis  usual ly  refers  to analysis  which involves 

fields which admi t  a n o n a r c h i m e d e a n  va lua t ion  such as the  p - a d i c  n u m b e r  fields. 

By n o n a r c h i m e d e a n  func t iona l  analysis  we mean  the  theo ry  of l inear  spaces  ove r  

n o n a r c h i m e d e a n  va lua t ion  fields e n d o w e d  with a n o n a r c h i m e d e a n  no rm in the  

sense of Monna .  

The  c rea t ion  of n o n s t a n d a r d  analysis  in the  ear ly  sixties by A b r a h a m  

R o b i n s o n  p rov ides  us with a new t echn ique  of  s tudying  p r o b l e m s  of analysis  with 

the  he lp  of  special  n o n a r c h i m e d e a n  fields. Tha t  the re  exists  also a close link 

b e t w e e n  n o n s t a n d a r d  analysis  and  n o n a r c h i m e d e a n  analysis  was first shown by 

A b r a h a m  Rob inson .  This  was es t ab l i shed  by showing that  every  n o n s t a n d a r d  

n u m b e r  sys tem gives rise to  a special  n o n a r c h i m e d e a n  va lua t ion  field ~ in 

which the classical  n o n a r c h i m e d e a n  p o w e r  series  field, first s tud ied  in de ta i l  by 

Levi-Civi th ,  can be  i m b e d d e d .  

The  pu rpose  of the  p re sen t  no te  is twofold .  Firs t  of all we shall  show that  the  

fields PR share  with the  p o w e r  ser ies  fields the  p r o p e r t y  of be ing  maximal ,  or  

wha t  is the  same,  a re  spher ica l ly  comple te .  Secondly ,  we show that  the re  is also a 

c lose link b e t w e e n  n o n s t a n d a r d  analysis  and  n o n a r c h i m e d e a n  func t iona l  
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analysis. This is accomplished by showing that every normed linear space E over 

the reals can be embedded in a nonarchimedean normed linear space P/~ over PR 

which is spherically complete. 

2. The fields PR introduced by A. Robinson 

For the terminology, definitions and results about nonarchimedean fields not 

explained in this paper we refer the reader to [9] and [12]. In addition, the reader 

is referred to either of the references [6], [8], [10], and [12] for the basic notions 

and techniques of nonstandard analysis used below. 

For  a proper  understanding of the paper we shall first recall a number of 

definitions and results from the theory of nonarchimedean fields which play an 

important role in the present paper. 

In the following, R will always denote  the set of real numbers. For the sake of 

convenience we shall adopt the convention that a symbol "oo" is added to R 

obeying the rules x + oo = oo + x for all x E R, oo + o0 = oo and x < oo for all x E R. 

A mapping v of a totally ordered commutative field K into R U {oo} is called a 

nonarchimedean valuation whenever it satisfies the following conditions: 

(2.1) v ( 0 ) = o o a n d  v ( x ) E R  for a l l x E K ,  x~O. 

(2.2) For all x, y E K, v(xy) = v(x)+ v(y).  

(2.3) For all x, y E K, v(x + y ) =  min(v(x),  v(y)). 

A valuation is called trivial whenever v (x )=  0 for all x ~ K and x #  0. All the 

valuations which occur in this paper are non-trivial and real-valued. 

From (2.2) it follows easily that v (1 )=  v ( - 1 ) = 0  and v ( x ) =  v ( - x ) =  

- v(1/x) for all non-zero x E K. 

The set 0x = {x : v (x) => 0} is an integral domain, the ring of integers of K. The 

set IK = { x : v ( x ) >  0} is a maximal ideal in OK, the valuation ideal of K. The 

quotient field OK/IK is called the residue class field of K. The set UK = {x: 

v(x)  = 0} is a multiplicative subgroup of OK, the group of units of K. Finally (2.2) 

shows that the set of values taken on by v is in general a subgroup of the additive 

group of the reals, the value group of K, which will be denoted by VK. 

The definition Ix Iv = e x p ( -  v(x)), x E K, where "exp"  denotes the exponen- 

tial function and where exp(-oo)  is to be interpreted as zero, turns K into a 

metric space. This metric has the following properties. 

(2.4) ] 0 [ o = 0 , [ l [ v = l  a n d [ x v [ > 0  for a l l x ~ K  a n d x ~ 0 .  
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(2.5) I - x l o = l x l v  for all x ~ K .  

(2.6) I x y [ v = l x [ v l y l v  for all x, y E K .  

(2.7) Ix+ylo<=max(fxlv, lylo)<-_rxlo+lylv f o r a l l  x, y E K .  

From (2.7)it  follows that  ] x - y [o > l y  - z Iv implies Ix - z Iv = {x - y I o. Hence ,  

the space (K, I �9 Io) is a metr ic  space in which every triangle is isosceles. For  this 

reason proper ty  (2.7) is often refer red  to as the ul t rametr ic  inequali ty.  

A set of the form {x: I x - x0 tv < r}, where  x0 E K and 0 < r E R, is called a 

closed ball. Any  two closed balls are e i ther  disjoint or one  is conta ined  in the 

other .  The  center  of a ball is not uniquely de te rmined  because of the ul t rametr ic  

inequality.  

A nonarch imedean  valuation field K is called comple te  if the associated 

metric space (K, I �9 Iv) is a comple te  metric space. In addit ion to the not ion of 

comple teness  a s t ronger  not ion,  that of spherical completeness ,  plays a very 

impor tan t  role in the theory  of nona rch imedean  analysis. We shall now present  

the precise definition of this not ion and discuss some of its consequences .  

(2.8) DEFINITION. A nonarch imedean  valuation field is called spherically 

comple te  wheneve r  every  non-empty  family of closed balls with the p roper ty  

that every pair has a non-empty  intersection has already a non-empty  intersec- 

tion. 

It is easy to see that a nonarch imedean  valuation field is spherically comple te  

if every decreasing sequence  of closed balls has a non-empty  intersection.  The  

reader  should recall here  that we are only considering real-valued valuations. 

A spherically comple te  nonarch imedean  field is always complete .  Indeed,  if 

x, E K (n = 1, 2,- �9 .) is a I " [~-Cauchy sequence,  then the decreasing sequence  of 

closed balls {x:] x - x, ]~ < maxk__>,] xk - x~+l Iv} has a non-empty  intersect ion,  

which can be shown to be the 1. Iv-limit of the sequence  {x,}. 

Following Ostrowski  (see [1]) we define. 

(2.9) DEFINITION. A mapping i ~  x, of a wel l -ordered set I without  a last 

e lement  into K is called pseudo-convergent  wheneve r  i, j, k E ! and i < j < k 

implies ] xk - xj Iv < [ xj - x, Io. An e lement  x0 E K is called a pseudo-l imit  of a 

pseudo-convergent  sequence  {x, : i E I} wheneve r  ] x 0 -  x, Iv = ] x,+l - x, [~ for all 

i E / .  A pseudo-convergen t  sequence  is said to be convergent  if it possesses a 

pseudo-limit .  

If {x~ : i  E I} is pseudo-convergent ,  then t xj - x i  I = l x i+ , -  x~ tv for  all i , j  E J 

satisfying i < ] .  The  pseudo-l imit  of a pseudo-convergent  sequence  is by no 
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means unique. If Xo is a pseudo-limit of {x~ : i ~ I}, then y is pseudo-limit of {x~} if 

and only if it can be written in the form y = Xo+X, where x E K satisfies 

Ix[o <[x,+,-x,l~ for all i E I .  
Concerning the notion of spherical completeness we have the following 

results. 

(2.10) THEOREM. A nonarchimedean valuation field K is spherically complete if 
and only if every pseudo-convergent sequence of K is convergent. 

PROOF. If K is spherically complete and {x~:iE I} a pseudo-convergent 

sequence in K, then it follows immediately that the family of balls Bi = 

{ x : ] x -  x, 1o _-<Ix,- x,+l[v} has the property that every pair has a non-empty 

intersection. Hence, by the spherical completeness of K there exists an element 

x , , ~ K  such that xoEB,  for all i E I .  It is then easy to see that x0 is a 

pseudo-limit of {x~ : i E I}. 

Conversely, assume that {B} is a non-empty family of balls of K such that 

every pair of elements of {B} has a non-empty intersection. {B} is totally- 

ordered by inclusion. Let ro = inf(r(B): B E {B}), where r(B) is the radius of B. 

If there exists an element Bo E {B } with r(Bo)= ro, then Bo C B for all B E {B} 

and the proof is finished. If this is not the case, however, then there exists a 

decreasing sequence {B,} C{B} with r(B,) decreasing to ro and a sequence {x,} 

of elements of K such that x. E B. and x, g B.+I for all n = 1, 2, �9 �9 �9 It is easy to 

see that the sequence {x,} is pseudo-convergent and that a pseudo-limit of {x,} is 

contained in all the balls of {B}. This completes the proof of the theorem. 

In [1], Kaplansky has shown that the notion of spherical completeness is 

connected with a maximality property of nonarchimedean fields introduced by F. 

K. Schmidt and first published by W. Krull in [2]. 

(2.11) DEFINmON. A nonarchimedean field K is called maximal if K does not 

admit a proper  extension to a nonarchimedean valuation field K '  such that K 

and K '  have the same valuation group and the same residue class field. 

From Theorem 2.10 and a result of Kaplansky [1] the following theorem 

follows. 

(2.12) THEOREM. Let K be a nonarchimedean valuation field. Then the follow- 

ing conditions are equivalent. 
i) K is spherically complete. 
ii) Every pseudo-convergent sequence in K is convergent. 
iii) K is maximal. 
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The equivalence of (ii) and (iii) is due to Kaplansky [1], theorem 4. 

We shall now turn our attention to the property of the special nonarchime- 

dean fields ~ introduced by A. Robinson [11], see also [12]. 

Let 9X be a superstructure in the sense of [5] based on a set of individuals 

sufficiently large to contain R and let * ~  be an ul trapower enlargement  of ~ .  

Then by *R we shall denote  the set of hyperreals of *gX or the nonstandard real 

number  system determined by ~Y~. 

For a proper  understanding of what is to follow the reader should know that 

such enlargements are sequentially comprehensive in the sense that if {a,}, 

n = 0, 1, 2,.  �9 �9 is an external sequence of entities of *gY~ of the same rank, then 

there exists an internal sequence {b,} in *~3~, where n now runs over  *N, the set 

of natural numbers of *Tdd, such that a,  = b, for all finite or standard n = 

0, 1, 2,- �9 �9 From this fact, the following basic lemma follows (see [12], ch. 3). 

(2.13) LEMMA. Let {a,}, n = 0 , 1 , 2 , . . .  be a strictly increasing (decreasing) 

sequence of infinitely large (infinitely small) positive numbers. Then there exists an 
infinitely large (infinitely small) positive number b such that a, < b (a, > b) for all 
n = 0 , 1 , 2 , - . . .  

Now let 0 < p be an arbitrary but fixed positive infinitesimal in *R, We then 

define subsets PMo and PM1 by 

"Mo = {x: x E *R and I x I < P-" for some positive integer n}, and 

(2.14) 

PM1 = {x : x E *R and I x I < P" for all finite positive integers n = 0, 1, 2,.  �9 .}. 

Evidently, ~M'1 is contained in ~ ~M1 is a subset of the set of infinitesimals 

M~ of *R and the set of finite numbers M0 of *R is contained in ~Mo. The set PMo 

inherits from *R the algebraic and order  operations. From this very definition it 

follows immediately that #M0 is an integral domain and that ~M~ is a unique 

maximal order  ideal in ~Mo. Hence,  the quotient ~R = ~Mo/PM~ is a totally- 

ordered field. 

The canonical mapping of ~Mo onto ~/~ with kernel ~M~ will be denoted by ~st. 

Then Pst is an order preserving bomomorphism.  Since ~M~ contains only one 

single standard number,  namely zero, %t maps R, the real numbers in a 

one-to-one manner  onto a subfield of ~R. From now on we shall identify ~st(R) 

with R. 

Recall that the set of finite elements  of *R is denoted by Mo (a E M 0  

whenever  there exists an element  r E R with [ a I < r), the set of infinitesimals of 
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*R by M1 ( h E M ~  whenever [ h [ < e  for all 0 < e E R ) ,  M1 is the unique 

maximal ideal of Mo and the algebraic and order  homomorphism of Mo onto R 

with kernel M1 is denoted by "s t"  and which is called the standard part 

operation. Furthermore,  x = i y means that x - y E M1, and so s t (a )  = la for all 

a ~ Mo. We shall now introduce the following additional notation. If x, y E *R, 

then x = .y  will mean that x - y E "M1. Then for any a ~ "Mo we have %t(a)  = 

pa. 

Since *R is a nonstandard model of R it follows from the transfer principle 

that all the elementary functions of R extend uniquely to *R preserving their 

properties as far as they occur in the list of true statements of the superstructure 

93~. Hence,  for every a E *R, a > 0, log.a,  where log. stands for the logarithmic 

function with base p, is well-defined. 

Assume now that x ~ "Mo and h ~ PM1. Then it follows immediately from the 

definition of "Mo that the numbers log. [ x [ and log. [ x + h [ are finite numbers of 

*R. Furthermore,  logp[x + h I - l o g .  Ix [ = log. 11+ h/x  [ = (log[1 + h /x  [)/logp 

shows, using the facts [ logp J is infinitely large and log[1 + h /x [  is infinitely 

small, that log. Ix [ =1 log. (I x + h [). Hence, st (log. Ix + h [) = st (log. Ix 1) for 

all x E PMo and h ~PM1. Consequently, by putting v~(0)=oo and v . ( a ) =  

st (log~ (1 x 1)), where a = "st (x), x ~ ~Mo, we define a unique function v. on "R. 

We have now the following important result due to A. Robinson [11]. For the 

proof we refer to [11] or [12]. 

(2.15) THEOREM. V, defines a non-trivial nonarchimedean valuation on "R. 

It is obvious from the definition of v, that the value group is the additive group 

of the reals. The residue class field is more difficult to determine. The valuation 

ring 0~R of "R consists of all the elements a ~ "R with the property that for each 

x E"Mo satisfying " s t ( x ) = a  there exists an infinitesimal h > 0  such that 

I x [ < P-h- The valuation ideal IpR of PR consists of all the elements a E ~R with 

the property that for each x E "M0 satisfying %t (x) = a there exists a positive 

standard real number e > 0 such that [ x [ < p ' .  It is clear from the formula 

log, [ x I -- log I x I/log p that all the non-zero standard numbers in "R are units. 

Hence, the residue class field 0pR/IpR of PR contains R as a subfield. Since the 

number log I log p l/[log p[ is infinitely small it follows that the element a = 

"st ([logp [) of PR is a unit and so the residue class field of "R is a proper  

extension of R. In fact, it is a totally-ordered nonarchimedean field. 

The mapping I" [, = exp ( -  vp ( . ) )  defines an ultrametric on "R. It was shown in 

[11], by A. Robinson, that the metric space (PR, 1-Ip) is complete. We shall now 

improve upon this result by showing that ~R has the following property. 
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(2.16) THEOREM. ( ~ Io) is spherically complete. 

PROOF. Accord ing  to T h e o r e m  2.10 we have  to show that  every  pseudo-  

convergen t  sequence  is convergent .  Since the  va lua t ion  is rea l -va lued  we have  

only to show that  every  p seudo -conve rgen t  sequence  {a,}, n = 1 , 2 , . . .  of  

e lements  of ~ is convergent .  

T o  this end,  we de t e rmine  first for  each n = 1, 2, �9 �9 �9 an e l emen t  x, ~ ~ such 

that  ~ ( x . ) =  a,. Since the  sequence  {a,} is p seudo -conve rgen t  we have  that  

vo(a,, - a . )  = vo(a.+~- a , )  for  all m ->_ n = 1 , 2 , . . . .  F r o m  the definit ion of vo it 

follows that  for  all m, n = 1 , 2 , . .  �9 satisfying m _-> n we have  

(2.17) logo Ix., - x .  I - l o g o  I x , + l - x .  1= 10. 

We  may  assume wi thout  loss of genera l i ty  that  the sequence  {x,} has been  

ex tended  to an internal  sequence  over  * N  with values  in *R, which we shall 

deno te  again by {x,}, n ~ *N. Then  f rom (2.17) and L e m m a  (2.13) we may  

conclude that  for  each n = 1, 2, .  �9 �9 there  exists an infinitely large na tura l  n u m b e r  

to, and a posi t ive infinitesimal h. such that  the sequence  {to,}, n = 1 , 2 , - . .  is 

decreas ing and the  sequence  {h,}, n = 1, 2 , - . .  is increasing and that  

(2.18) [logo Ix., - x.  I - logo [Xn+l - -  X n  ] I~-~ h, for  all m satisfying m =< to.. 

Using again L e m m a  2.13 we may  conclude that  there  exists a posi t ive 

infinitesimal ho > 0 and an infinitely large na tura l  n u m b e r  too such that  h, _-< ho 

for  all n = 1 , 2 , . . .  and to. ->_ too for  all n = 1 , 2 , . . - .  Hence ,  

I l o g o l x ~ o - x . ] - l o g o l x , + , - x , I  I <=ho 

for  all n = 1 , 2 , . . . .  This  implies  that  X~oE"Mo and that  a o =  ~  satisfies 

vo(ao-  a , )  = vo(a.+~- a , )  for  all n = 1 , 2 , . . - ,  that  is, a0 is a pseudo- l imi t  of the  

sequence  {a,}. This  comple tes  the p roof  of the theo rem.  

REMARK. T h e  genera l  power  series fields L in t roduced  by T. Levi-Civi th  in 

[4] (see also [3] and [12]) are fields whose  e lements  are the  fo rmal  express ions  

E~=o a J  ~k, where  the  coefficients ak and the exponen t s  vk are real. T h e  sequence  

{v~} is a r r anged  in increasing order ,  that  is, vk < vk+~ for  all k = 0, 1 , 2 , . .  �9 and is 

a ssumed  to be  unbounded .  Two  such express ions  are regarded ,  by definition, as 

equal  if for  each t e rm  at v which occurs in one  but  not in the other ,  a = 0. T h e  

sum and p roduc t  are def ined in the usual  manne r ,  and as one  of the results  one  

can show that  L is a field unde r  these  ope ra t ions  with 1 . t~  . . .  as 

unit. F u r t h e r m o r e  L is to ta l ly -ordered  by defining an express ion  to be  posi t ive if 

the first non-vanishing coefficient is posit ive.  W e  can also define on L a valuat ion 
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vL by setting vL(0)=oo and VL(Eoa~t~k) = vm where m is the first of all the 

indices of the non-vanishing coefficients. In this case, it is easy to see that the 

value group is the multiplicative group of the reals and that the real number 

system is its residue class field. Furthermore,  it can easily be shown that L is 

spherically complete, that is, L is maximal. For a detailed account of the above 

result about L we refer the reader to [3], [4] and [12]. It was first shown by A. 

Robinson [11] and [12] that L is isomorphic algebraically and isometrically to a 

subfield of OR. This algebraic isometry can be given by means of the following 

definition. Let ~ = Pst (p) and assign to any formal expression Eo akt vk the formal 

infinite p-series Eoakt5 ~ of OR. It can be shown that the infinite p-series are 

convergent in ~R and that the mapping Eoa~t ~ --~Eoak~ ~ of L onto ~ is an 

algebraic isomorphism which preserves the valuation. 

Since both fields L and ~ are maximal and have different residue class fields 

~ is a proper  maximal extension of the Levi-Civith field. The imbedding of L 

into ~ can be used to facilitate the definition of functions of L into L and the 

investigation of certain asymptotic series. For details of this aspect of the fields 

~ we refer to the recent book [12]. 

For different values of the infinitesimal p we generate different maximal fields 

~ which are extensions of R. For a given model *R of R the fields ~ have the 

same value group and isomorphic residue class fields. From a result of Kaplansky 

[1], theorem 7, it follows that for each pair of positive infinitesimals pl, p~ the 

fields ~ and ~ are analytically equivalent over R, that is, there exists an 

isomorphism of ~ onto ~R which is value preserving and the identity on R. 

3. Nonarchimedean functional analysis 

The theory of normed spaces over nonarchimedean valuation fields has its 

origin in the theory of nonarchimedean distance functions which were intro- 

duced by Hausdorff. A metric space (X, d) is called nonarchimedean whenever 

for every triple of points x, y, z E X d(x,  y) -< max (d(x, z), d(y, z)). The connec- 

tion between nonarchimedean metrics and nonarchimedean valuation fields can 

be seen by observing that, if (K, v) is a nonarchimedean valuation field, then the 

metric space (K,I" Iv) is nonarchimedean. Furthermore,  if f is a mapping of a 

non-empty set X into K, then d(x,  y ) =  e x p ( - v ( f ( x ) -  f (y ) )  is a nonarchime- 

dean semi-metric on X. Every nonarchimedean metric space is zero-dimen- 

sional. In fact, it is not difficult to show that every non-zero-dimensional metric 

space can be given an equivalent nonarchimedean metric. Furthermore,  Haus- 

dorff has shown that every metric space is the continuous image of a nonar- 

chimedean metric space. 
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In the present paper we shall, however, restrict ourselves to the theory of 

nonarchimedean normed linear spaces in the sense of A. F. Monna [9]. Such 

spaces considered as metric spaces are particular examples of nonarchimedean 

metric spaces. We recall their definitions. Let (K, v) be a nonarchimedean 

valuation field with the metric I" Io = e x p ( -  v(.)) .  A linear space E over K is 

called a nonarchimedean normed linear space if there exists a mapping p of E 

into the reals which satisfies the following conditions: 

i) p(x)= 0 if and only if x = 0, 

ii) for all a U K and x E E we have p(ax) = l a lop(x), 
iii) p(x + y)_<- m a x ( p ( x ) , p ( y ) )  for all x ,y  ~ E. 

From these properties it follows immediately that p(x)>= 0 for all 

p ( x ) = p ( - x )  and p(x+y)=max(p(x),p(y)) if p(x)#p(y).  If the mt c 

space (E, p) is complete, then (E, p) is called a nonarchimedean Banach space. 

The theory of nonarchimedean normed linear spaces has been developed 

extensively and the reader who is interested in the general theory is referred to a 

recent book by A. F. Monna [9]. 

The purpose of the present section is to show that, using nonstandard number 

systems, there exists a close link between the classical theory of normed linear 

spaces and the theory of nonarchimedean normed linear spaces. In fact, what we 

shall show is that every normed linear space over the reals can be imbedded in a 

particular fashion, to be explained later, in a nonarchimedean normed linear 

space. The construction is closely analogous to the construction of the nonstan- 

dard hull of a normed linear space introduced by the author in [5]. 

Given a normed linear space (E, p) over R or a family of normed linear spaces 

we shall again denote by ~IR a superstructure based on a set of individuals which 

is sufficiently large as to contain the linear space E or the elements of the spaces 

of the given family as members. In addition to ~32 we consider our ultrapower 

enlargement *~r~ of 932. Then, if (E, p) is an entity of 93~ we shall denote  by 

(*E, *p) the corresponding entity of "93~ which has the same properties relative 

to * ~  as (E,p) has to ~ as far as they can be formulated in terms of the 

language selected to express the properties of ~32. To facilitate the discussion we 

shall first briefly recall the definitions of the nonstandard hull of a normed linear 

space. 

Let (E,p) be a normed linear space and let (*E, *p) denote its extension in 
*~ff~. 

An element a E *E is called finite whenever *p(a) is a finite number  of *R. 

The set of all norm-finite elements of *E will be denoted by p-fin (*E). By ~z, (0) 

we shall denote the elements of *E who's norm are infinitely small, that is, 
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a E p.~(0) whenever *p(a) = 10. We shall now consider p-f in(*E) as a linear 

space over R. Then/z~(0) is a linear subspace of p-fin (*E). The quotient space 

p-fin (*E)//~p(0) is called the nonstandard hull of E and is denoted by/~. The 

canonical mapping of p-f in(*E) on to /~  with kernel p.,(0)will be denoted by 

"stp". Now a norm t5 can be defined by setting /5(a)=st(*p(x)) ,  where 

a = stp (x). Then (/~,/5) is a normed linear space over R which contains (E,p)  as 

a linear subspace. In [5] we have shown that the Nl-saturation property of * ~  

implies that (/~,/5) is a Banach space. For each internal subspace F C *E the 

space /6= stp (Ffqp- f in(*E))  is a closed linear subspace of /~. If F is a 

*-finite-dimensional subspace of *E, then P is called a hyper-finite dimensional 

subspace of/~.  

The preceding construction of /~  can be generalized as follows. An element 

a E *E is called norm p-finite, where p is a given positive infinitesimal, 

whenever *p(a)EPMo. The set of all norm p-finite elements of *E will be 

denoted by p-finp (*E). An element a E *E is called a p-infinitesimal whenever 

*p(a) E PM1. The set of all p-infinitesimals of *E will be denoted by ~/xp (0). Now 

it is easy to see that the set p-fin, (*E) is in a natural way a linear space over ~M0 

and that ~/~(0) is a linear subspace of p-fin, (*E). By ~/~ we denote the quotient 

space p-fin~ (*E )/~t~p (0) which can be considered as a linear space over ~ The 

canonical mapping of p-finp (*E) onto ~/~ with kernel P~p(0) will be denoted by 

"~stp". A norm/5~ can be defined on ~/~ as follows: If a U ~/~ and x ~ p-fin~ (*E) 

such that ~st~ (x) = a we set/5~(a) = I*P(X)l~. 
We shall now first prove the following theorem. 

(3.1) THEOREM. The space (P/~,/5p) is a nonarchimedean normed linear space 
over PR in the sense of Monna. 

PROOF. It is easy to see that/~,(0) = 0 and/sp(a) = 0 implies *p(x) = 0, where 

Pste (x) = a, and so x = 0 implies a = 0. Let t E ~R and let a = Pstp (x) E ~/~ with 

x E p-finp (*E). Then ~p(ta) = I(*p(tx))Ip = I(Itl*p(x))I~ = I t I~ -/5,(a). Furth- 

ermore, if a = Pstp (x) and b = Pst~ (y), where x, y E p-finp (*E), then 

/sp(a + b)= I(*p(x + Y))Ip 

--< I *p(x) + *p(y) Ip --< max (I *P (x) Ip, I *P (Y) Ip ) = max ~ ,  (a),/5p (b)), 

and the proof is finished. 

As in the case of the nonstandard hull of a given normed linear space (E, p), 

the mapping ~stp imbeds E into a linear subspace of ~/~. In this case, however, if 

a E E and a ~ 0 ,  then ~p(pstp(a))=lp(a)l  p = 1. This leads to the following 
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observation that E generates a linear subspace in the quotient space PE1/PEo 

over the residue class field of PR, where ~/~1 = {a: a E~/~ and i0 , (a )=  < 1} and 

"/~0 = {a: a E P/~ a n d / ~ ( a )  < 1}. 

Let F C * E  be an internal subspace of *E. Then ~ = ~sto(F f'l p-finp(*E)) 

with the norm/~, is a linear subspace of P/~. If F is a *-finite dimensional subspace 

of *E, then "P is called a hyperfinite dimensional subspace of ~/~. 

Given a normed linear space E over a nonarchimedean valuation field K it is 

natural to ask for whether there exist sufficiently many continuous K-linear 

functionals on E. It was shown by A. W. Ingleton (see [9], p. 58) that a necessary 

condition for this to hold is that the norm on E has the ultrametric property. 

Furthermore,  he showed that in order that for a nonarchimedean normed linear 

space over K the full Hahn-Banach  extension theorem holds for K-valued 

linear functionals it is necessary and sufficient that K is spherically complete. 

Since the field PR is spherically complete we may conclude that the 

Hahn-Banach  extension theorem holds for the spaces ~/~. 

More generally it was shown (see [9]) that a nonarchimedean normed linear 

space E has the Hahn-Banach  property, that is, for every nonarchimedean 

normed linear space F over the same field every bounded linear transformation 

from a linear subspace of F into E can be extended to a linear transformation of 

F into E with the same norm, if and only if E is spherically complete. 

Generalizing Theorem 2.16 we shall now prove the following theorem. 

(3.2) THEOREM. I f  E is a normed linear space over R and if p > 0 is an 

infinitesimal, then the p-nonarchimedean normed hull o~ of E is spherically 

complete. Furthermore, if F is an internal subspace of *E, then PP is closed and 

spherically complete. In particular, every hyperfinite dimensional subspace of ~E is 

closed and spherically complete. 

PROOF. In order to prove that P/~ is spherically complete we have to show 

that every decreasing sequence of balls has a nondecreasing intersection. To this 

end, let Bn (n = 1 , 2 , . . . )  be a decreasing sequence of balls of radius r. 

(n = 1 ,2 , . . . ) ,  and let r = infrn. If r = r, for some n, then there is nothing to 

prove. If this is not the case, then there is a sequence {an} (n = 1, 2,-" .) such that 

a. E B ,  and a ,~Bn+l .  If k < l < m ,  then a , , ~ B , . C B t  and atEB~, and so 

O(a,, - a , )< r~. Since a ~  B~ we have also 16,(a~ - a~)> r~, which implies that 

~p(a~. - a,) < Oo(ak - a,). Hence, /~o(ak - a~) =/~p(at+~ - a,) for all l and k _>- I. 

Let xk E * E  be such that Ost~(xk)= ak (k = 1 ,2 , . . . ) ,  then 

e x p ( -  logo *p(xk - x t ) ) -  e x p ( -  logo *p(xt+l- x,)) = 10 
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for all k->/ .  Hence, for each 1 = 1 ,2 , . . . ,  there exists an infinitesimal 0 <  

h, E M~ such that I logp (*p(xk- x,))-logo (*p(x,.~- x,)) I <-h, for all k-> I. Let 

us now assume that the sequence {xk} is extended into *E over *N into an 

internal sequence. If, incidentally, xk E F (k = 1, 2,.  �9 .) where F is internal, then 

the extended sequence may be assumed without loss of generality to be extended 

with values in F. Then as in the proof of Theorem 2.16 we may conclude that 

there is an infinitely large natural number ~o0 and a positive infinitesimal ho > 0 

such that for all n = l , 2 , . . .  I log~(*p(x~0-x~)) - logp(*p(x , .~-x~)) l<-_ho.  

Then *p(x~)5*p(x~-  x,)+ *p(x,) shows that x ~ E  p-fin~ (*E) and hence, 

ao = *stp(x~o)E P/~, and /~p(a0- an) =/~,(an.~-  an) for all n = 1, 2 , - . - .  Hence,  

~p(ao- an)<= r. for all n = 1 ,2 , - . . ;  and the proof is finished. 

REMARK. It is easy to see that every bounded linear functional x ' E  E '  on E 

has a natural extension to the space P/~. To this end we only have to observe that 

x' being bounded it satisfies a Lipschitz condition of order  one with respect to 

the norm on E. Hence, its extension to *E, which we shall again denote by x',  

satisfies the property that if x E p-finp (*E), then I (x, x')l  E PMo, and if x, y 

p-finp (*E)  satisfy II x - y [l=p0, then (x, x ')=p(y, x'). From this we conclude that 

on the quotient space ~/~ the functional x '  defines a bounded linear functional of 

P/~ into "R and defines an imbedding of the Banach dual E '  of E into the dual 

space of P/~. The properties of this imbedding and related questions will be 

discussed in another  paper. 
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